

GPU Architecture & Best Practices

WHAT IS HETEROGENEOUS COMPUTING?

GPU ARCHITECTURE

GPU SM ARCHITECTURE

Kepler SM

- Functional Units = CUDA cores
 - 192 SP FP operations/clock
 - 64 DP FP operations/clock
- Register file (256KB)
- Shared memory (16-48KB)
- L1 cache (16-48KB)
- Read-only cache (48KB)
- Constant cache (8KB)

SIMT EXECUTION MODEL

- Thread: sequential execution unit
 - All threads execute same sequential program
 - Threads execute in parallel
- Thread Block: a group of threads
 - Threads within a block can cooperate
 - Light-weight synchronization
 - Data exchange
- Grid: a collection of thread blocks
 - Thread blocks do not synchronize with each other
 - Communication between blocks is expensive

SIMT EXECUTION MODEL

Software

Hardware

Threads are executed by CUDA Cores

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

SIMT EXECUTION MODEL

- Threads are organized into groups of 32 threads called "warps"
- All threads within a warp execute the same instruction simultaneously

LOW LATENCY OR HIGH THROUGHPUT?

- CPU architecture must minimize latency within each thread
- GPU architecture hides latency with computation from other threads

ACCELERATOR FUNDAMENTALS

- We must expose enough parallelism to saturate the device
 - Accelerator threads are slower than CPU threads
 - Accelerators have orders of magnitude more threads

Fine-grained parallelism is good

t0	t1	t2	t3
t4	t5	t6	t7
t8	t9	t10	t11
t12	t13	t14	t15

Coarse-grained parallelism is bad

t0	t0	t0	t0
t1	t1	t1	t1
t2	t2	t2	t2
t3	t3	t3	t3

Optimize Data Locality: GPU

Minimize data transfers between CPU and GPU

Optimize Data Locality: SM

- Minimize redundant accesses to L2 and DRAM
 - Store intermediate results in registers instead of global memory
 - Use shared memory for data frequently used within a thread block
 - Use const __restrict__ to take advantage of read-only cache

Coalesce Memory Requests

- If multiple addresses from a warp lie within the same cache line, that line is moved only once
- Best case: all addresses lie in a single L1 cache line (128B)

Worst case: 32 separate L1 transactions (31 replays)

more memory traffic more issued instructions

Avoid Warp Divergence

```
if( threadIdx.x < 12 ) {</pre>
else {
```

Instructions are issued per warp

Different execution paths within a warp are serialized

Different warps can execute different code with no impact on performance

Avoid branching on thread index

Quick Summary

- Expose enough parallelism
- Optimize data locality
 - Minimize transfers between CPU and GPU
 - Minimize redundant accesses to GPU DRAM
- Avoid memory divergence
 - Ensure global accesses are coalesced
- Avoid warp divergence
 - Ensure threads in a warp execute the same path

Programming GPUs

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Compiler Directives Programming Languages

Easy to use
Most Performance

Easy to use Portable code

Most Performance Most Flexibility

SIMPLICITY & PERFORMANCE

Accelerated Libraries

- Little or no code change for standard libraries, high performance
- Limited by what libraries are available

Compiler Directives

- Based on existing programming languages, so they are simple and familiar
- Performance may not be optimal, directives often do not expose low level architectural details

Parallel Programming languages

- Expose low-level details for maximum performance
- Often more difficult to learn and more time consuming to implement

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Compiler Directives Programming Languages

Easy to use
Most Performance

Easy to use Portable code

Most Performance Most Flexibility

NVIDIA DEVELOPER LIBRARIES

cuBLAS-XT NVBLAS

cuFFT-XT

cuSPARSE cuSOLVER AMGX

cuDNN

cuRAND

THRUST

NPP

NVENC

NVBIO

BLAS LIBRARIES

CUBLAS

> Step 1: Substitute library calls with equivalent CUDA library calls

```
saxpy ( ... ) cublasSaxpy ( ... )
```

Step 2*: Manage data locality if necessary

```
- with CUDA: cudaMalloc(), cudaMemcpy(), etc.- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.
```

Step 3: Rebuild and link the CUDA-accelerated library

```
nvcc myobj.o -l cublas
```

BLAS LIBRARIES

NVBLAS

- Drop-in replacement for level 3 BLAS routines (i.e. GEMM)
 - Automatically uses all available GPUs in the system
 - No need to modify or even recompile your application
 - LD_PRELOAD=<path to libnvblas.so> <application>

SPARSE MATRIX LIBRARIES

CUSPARSE

- Collection of sparse matrix building blocks
- Supports multiple matrix formats
- https://developer.nvidia.com/cuSPARSE

CUSOLVER

- Collection of sparse and dense solvers
- Similar to LAPACK
- https://developer.nvidia.com/cusolver

AmgX

- Algebraic Multi-Grid Solver
- Flexible configuration
- Krylov methods
- Parallel smoothers
- MPI support
- https://developer.nvidia.com/amgx

THRUST

- C++ template library for CUDA
 - Mimics Standard Template Library (STL)

Data Structures

- thrust::device vector
- thrust::host vector
- thrust::device_ptr
- Etc.

Algorithms

- thrust::sort
- thrust::reduce
- thrust::exclusive_scan
- Etc.

THRUST EXAMPLE: SAXPY

STL C++ Code

Parallel C++ Code

```
int N = 1 << 20;
std::vector<float> x(N), y(N);
// Perform SAXPY on 1M elements
std::transform(x.begin(), x.end(),
               y.begin(), y.end(),
              2.0f * _1 + _2);
```

```
int N = 1 << 20;
thrust::host_vector<float> x(N), y(N);
thrust::device_vector<float> d_x = x;
thrust::device_vector<float> d_y = y;
// Perform SAXPY on 1M elements
thrust::transform(d_x.begin(), d_x.end(),
                  d_y.begin(), d_y.begin(),
                  2.0f * _1 + _2):
```

CUB

- Library of SIMT collective primitives for block-wide and warp-wide kernel programming
 - Cooperative sort, prefix sum, reduction, histogram, etc.

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Compiler Directives

Programming Languages

Easy to use
Most Performance

Easy to use Portable code

Most Performance Most Flexibility

OPENACC DIRECTIVES SYNTAX

```
#pragma acc directive [clause [,] clause] ...]
...structured code block
```

Fortran

```
!$acc directive [clause [,] clause] ...]
...structured code block
!$acc end directive
```


OPENACC EXAMPLE: SAXPY

SAXPY in C

SAXPY in Fortran

```
void saxpy(int n,
           float a,
           float *x,
           float *restrict y)
#pragma acc parallel loop
  for (int i = 0; i < n; ++i)
   y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy(1 << 20, 2.0, x, y);
```

```
subroutine saxpy(n, a, x, y)
  real :: x(n), y(n), a
  integer :: n, i
  !$acc parallel loop
 do i=1,n
   y(i) = a*x(i)+y(i)
 enddo
  !$acc end parallel loop
end subroutine saxpy
! Perform SAXPY on 1M elements
call saxpy (2**20, 2.0, x, y)
```

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Compiler Directives Programming Languages

Easy to use
Most Performance

Easy to use Portable code

Most Performance Most Flexibility

GPU PROGRAMMING LANGUAGES

Numerical analytics

MATLAB, Mathematica, LabVIEW

Fortran >

CUDA Fortran

C >

CUDA C

C++ >

CUDA C++

Python >

PyCUDA, Copperhead

F# ▶

Alea.cuBase

CUDA EXAMPLE: SAXPY

Serial C Code

Parallel CUDA Code

```
void saxpy_serial(int n,
                  float a,
                  float *x,
                  float *y)
  for (int i = 0; i < n; ++i)
   y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy_serial(4096*256, 2.0, x, y);
```

```
__global___
void saxpy_parallel(int n,
                     float a,
                     float *x,
                     float *y)
  int i = blockIdx.x*blockDim.x +
          threadIdx.x;
  if (i < n) y[i] = a*x[i] + y[i];
// Perform SAXPY on 1M elements
saxpy_parallel <<< 4096, 256>>> (n, 2.0, x, y);
```

CUDA MEMORY MANAGEMENT

Without Unified Memory

```
void sortfile(FILE *fp, int N) {
  char *data, *d data;
  data = (char*) malloc(N);
  cudaMalloc (&d data, N);
  fread(data, 1, N, fp);
  cudaMemcpy(d data,data,N,H2D);
  qsort<<<...>>>(d data,N,1,compare);
  cudaMemcpy(data,d data,N,D2H);
  use data(data);
  cudaFree(d data);
  free (data);
```

Unified Memory

```
void sortfile(FILE *fp, int N) {
  char *data;
  cudaMallocManaged(&data, N);
  fread(data, 1, N, fp);
  qsort<<<...>>>(data, N, 1, compare);
  cudaDeviceSynchronize();
  use data(data);
  cudaFree(data);
```

CUDA MEMORY MANAGEMENT

- cudaMalloc & cudaMemcpy
 - Explicitly track host and device memory
 - Explicitly relocate data (sync or async)
 - Expresses data locality (most performance)

- cudaMallocManaged
 - Single pointer for host & device memory
 - Automatic relocation at launch and sync
 - Easier porting of application (simplicity)

ADVICE: develop with cudaMallocManaged, optimize with cudaMalloc if necessary

The Future of GPUs

NEW TECHNOLOGIES

> NVLINK

- GPU high speed interconnect
- 5x-12x PCI-E Gen3 bandwidth
- Planned support for POWER® CPUs
- HBM (Stacked Memory)
 - 4x higher bandwidth (~1 TB/s)
 - 3x larger capacity
 - 4x more energy efficient per bit

IMPROVING UNIFIED MEMORY

```
void sortfile(FILE *fp, int N) {
   char *data, *d_data;
   cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

   qsort<<<...>>>(d_data, N, 1, compare);
   cudaDeviceSynchronize();

   use_data(data);

   cudaFree(data);
}
```

```
void sortfile(FILE *fp, int N) {
  char *data;
  data = (char*) malloc(N);

fread(data, 1, N, fp);

  qsort<<<...>>>(data,N,1,compare);
  cudaDeviceSynchronize();

  use_data(data);

  free(data);
}
```

SUMMIT

2017 OLCF Leadership System

- Vendor: IBM (Prime) / NVIDIA™ / Mellanox Technologies®
- At least 5X Titan's Application Performance
- Approximately 3400 nodes, each with:
 - IBM POWER9 CPUs + NVIDIA Volta GPUs
 - CPUs and GPUs connected with high speed NVLink
 - Large coherent memory: over 512 GB (HBM + DDR4)
 - Over 40 TF peak performance
- Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect

SUMMIT

How does Summit compare to Titan

Feature	Summit	Titan
Application Performance	5-10x Titan	Baseline
Number of Nodes	~3,400	18,688
Node performance	> 40 TF	1.4 TF
Memory per Node	>512 GB (HBM + DDR4)	38GB (GDDR5+DDR3)
NVRAM per Node	800 GB	0
Node Interconnect	NVLink (5-12x PCIe 3)	PCIe 2
System Interconnect (node injection bandwidth)	Dual Rail EDR-IB (23 GB/s)	Gemini (6.4 GB/s)
Interconnect Topology	Non-blocking Fat Tree	3D Torus
Processors	IBM POWER9 NVIDIA Volta™	AMD Opteron™ NVIDIA Kepler™
File System	120 PB, 1 TB/s, GPFS™	32 PB, 1 TB/s, Lustre®
Peak power consumption	10 MW	9 MW

SUMMIT

Titan & Summit Application Differences

- Fewer but much more powerful nodes
 - 1/6th the number of nodes, but ~25x more powerful
- Must exploit more node-level parallelism
 - Multiple CPUs and GPU to keep busy
 - Likely requires OpenMP or OpenACC programming model
- Very large memory
 - Summit has ~15x more memory per node than Titan
- Interconnect is only ~3x the bandwidth of Titan
 - Need to exploit data locality within nodes to minimize message passing traffic

RESOURCES

Learn more about GPUs

- CUDA resource center:
 - http://docs.nvidia.com/cuda
- GTC on-demand and webinars:
 - http://on-demand-gtc.gputechconf.com
 - http://www.gputechconf.com/gtc-webinars
- Parallel Forall Blog:
 - http://devblogs.nvidia.com/parallelforall
- Self-paced labs:
 - http://nvlabs.qwiklab.com